

MENDAL

- Which kind of product
- How does KENDAL NEM work?
- Kendal Nem vs Radifarm or Viva
- Field Trials

- WHICH KIND OF PRODUCT
- How does KENDAL NEM work?
- Kendal Nem vs Radifarm or Viva
- Field Trials

KENDALMEN

A CLEAR POSITIONING

«IT IS A SPECIFIC BIOSTIMULANT THAT, IN PRESENCE OF SOILS AFFECTED BY NEMATODES WORKS DIRECTLY ON PLANT ROOT SYSTEM INCREASING PLANT DEVELOPMENT AND ROOTS VIGOUR»

ROOT SYSTEM IMPROVEMENT MEANS A BETTER PLANT DEVELOPMENT AND BETTER PRODUCTIVE PERFORMANCE

SOME CONSIDERATIONS WHEN WE SPEAK ABOUT KENDAL NEM:

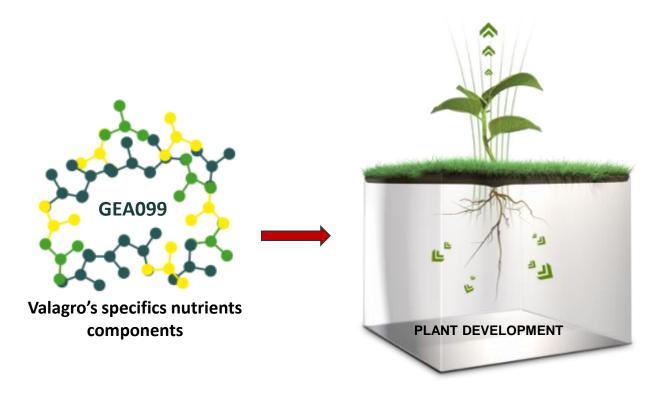
WE ARE NO THINKING ABOUT NEMATODES

WE THINK ONLY ON PLANT...

KENDAL NEM WORKS DIRECTLY ON PLANT PHYSIOLOGY

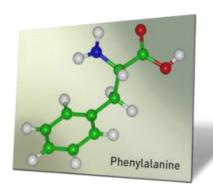
▎【◀ ╡ፘ∣»У·◥ Щ ፘ∣╡/ヘノ

- Which kind of product
- **HOW DOES KENDAL NEM WORK?**
- Kendal Nem vs Radifarm or Viva
- Y2014 Next Steps


HOW DOES IT WORK?

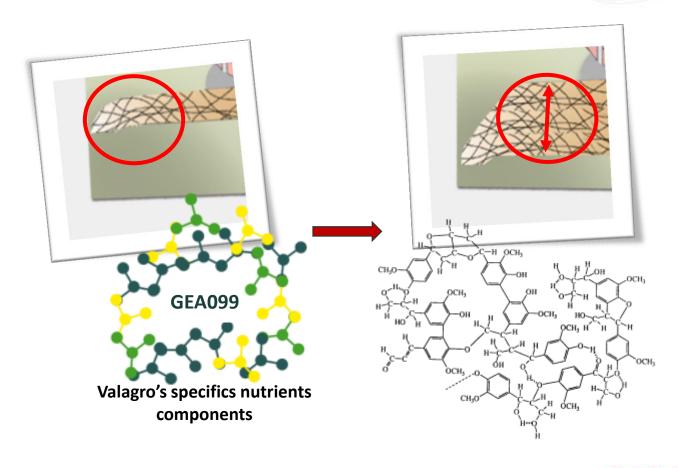
	GEA 099	Mineral fraction
1. Helps plants to remain vigorous in presence of nematodes	0	
2. It increases the physical strength of the roots	0	0
3. It reinvigorates the roots	0	0

1. HELPS PLANTS TO REMAIN VIGOROUS IN PRESENCE OF **NEMATODES**


GEA 099 components like aminoacids and proteins, assures **PROMPT ACTIVATION OF METABOLIC** PROCESSES. This activity helps the plant to maintain high levels of nutrition in presence of soil affected by nematodes.

2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

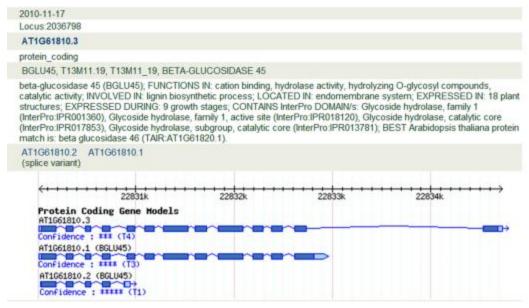
PLANT "CELL WALL" THICKENING - SYNTHESIS OF SALICYLIC ACID

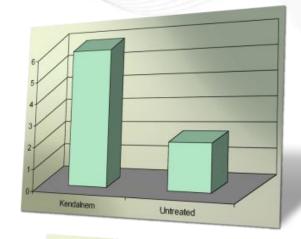

The components present in GEA099 – our own specific nutrient - increase root physical stamina. Amino acids such as Tyrosine and Phenylalanine are directly involved in:

- 1a. the synthesis of phenolic substances such as lignin, responsible for increased lignification of root tissue
- 1b. synthesis of salicylic acid, involved in the mechanisms of plant robustness
- 1c. Reduces root morphological defects

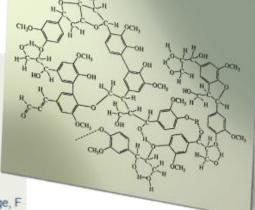
2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

1a. the synthesis of phenolic substances such as lignin, responsible for increased lignification of root tissue


www.arabidopsis.org


2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

1a. the synthesis of phenolic substances such as lignin, responsible for increased lignification of root tissue

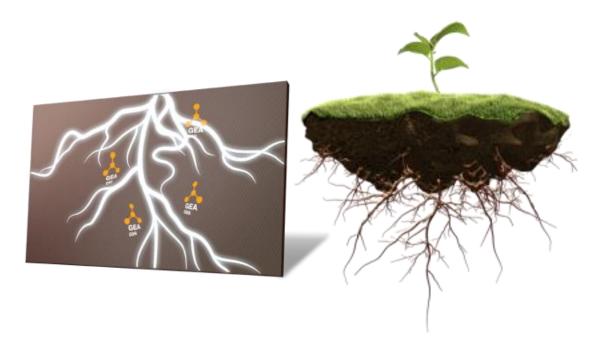

hypocotyl, inflorescence meristem, male gametophyte, pedicel, petal, root,

seed, sepal, shoot apex, stamen, stem, vascular leaf

2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

1b. synthesis of salicylic acid, involved in the mechanisms of plant robustness

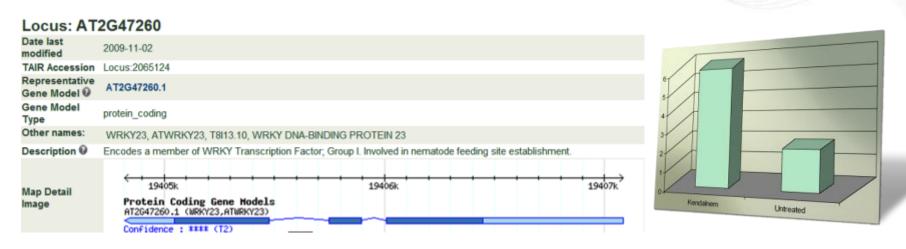
There's an inverse correlation between root basal PR-1 expression and plant susceptibility to nematodes


Kendal Nen	Kendal Nem : gene markers						
Locus Identifier	Annotation	KENDAL NEM	Name				
AT2G19990	PR-1-LIKE (PATHOGENESIS- RELATED PROTEIN-1-LIKE)	27	pathogenesis-related protein 1 (PR-1), identical to pathogenesis-related protein 1				
AT2G19970	pathogenesis-related protein, putative	13	pathogenesis-related protein, putative, similar to pathogenesis-related protein 1 { <i>Arabidopsis thaliana</i> } GI:166805; contains Pfam profile PF00188: SCP-like extracellular protein				
AT1G50060	pathogenesis-related protein, putative	3	pathogenesis-related protein, putative, similar to prb-1b (Nicotiana tabacum) GI:19970; contains Pfam profile PF00188: SCP-like extracellular protein				

2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

1c. Reduces root morphological defects

The Gea active 099 ingredients glycine betaine, aminovaleric acid δ - and γ -aminobutyric acid induce an increase of specific compounds in root tissue which maintain on harmonic root architecture reducing malformations. THE RESULT IS A VIGOROUS ROOT SYSTEM DEVELOPED IN THE RIGHT WAY.



KENDAL NEM

2. IT INCREASES THE PHYSICAL STRENGTH OF THE ROOTS

1c. Reduces root morphological defects

Annotations 🚱	category	relationship type 🕡	keyword 🚱
	GO Biological Process	involved in	regulation of transcription, DNA-dependent,
	GO Molecular Function	has	sequence-specific DNA binding transcription factor activity
	Growth and Developmental Stages	expressed during	4 anthesis, 4 leaf senescence stage, C globular stage, D bilateral stage, E expanded cotyledon stage, F mature embryo stage, LP.02 two leaves visible, LP.04 four leaves visible, LP.10 ten leaves visible, LP.12 twelve leaves visible, M germinated pollen stage, petal differentiation and expansion stage
	Plant structure	expressed in	carpel, cauline leaf, collective leaf structure, embryo, flower, hypocotyl, inflorescence meristem, leaf apex, leaf lamina base, male gametophyte, pedicel, petal, petiole, root, seed, sepal, shoot apex, shoot system, sperm cell, stamen stem, vascular leaf

3. IT REINVIGORATES THE ROOTS

The GEA099 component plays a crucial role in maintaining constant energy for the roots. Nutritional imbalances in fact can occur due to loss of efficiency of the damaged roots. The various components present in GEA099, Aspargina and Arginina identifyed as factors of rooting and Thiamines are directly involved in stretching and architecture of the roots, and ENSURE THE FORMATION OF NEW ROOTS AND IMPROVING THE ROOT SYSTEM

MEDINALEDI

SOME CONSIDERATIONS WHEN WE SPEAK ABOUT KENDAL NEM:

WE ARE NO THINKING ABOUT NEMATODES

WE THINK ONLY ON PLANT...

KENDAL NEM WORKS DIRECTLY ON PLANT PHYSIOLOGY

WORKS DIRECTLY ON PLANT PHISOLOGY TO INCREASE PLANT **DEVELOPMENT**

KENDAL NEM INCREASES PLANT DEVELOPMENT IN SOIL AFFECTED BY NEMATODES

PLANT >>

POST TRANSPLANT

PLANT GROWTH

FIRST FLOWERING

FIRST TRUSS FRUIT SET

FRUIT ENLARGEMENT

AFTER 1° HARVEST **FIRST** UNTIL FRUIT THE END OF RIPENING THE

CROP CYCLE

INTEGRATED CROP MANAGEMENT >>

WORK DIRECTLY ON PLANT PHISOLOGY TO INCREASE PLANT **DEVELOPMENT**

KENDAL NEM <u>INCREASES PLANT DEVELOPMENT</u> IN SOIL AFFECTED BY NEMATODES

PLANT >>

POST TRANSPLANT

PLANT

GROWTH

FIRST FLOWERING

FIRST TRUSS FRUIT SET

FRUIT ENLARGEMENT

FIRST

FRUIT

RIPENING

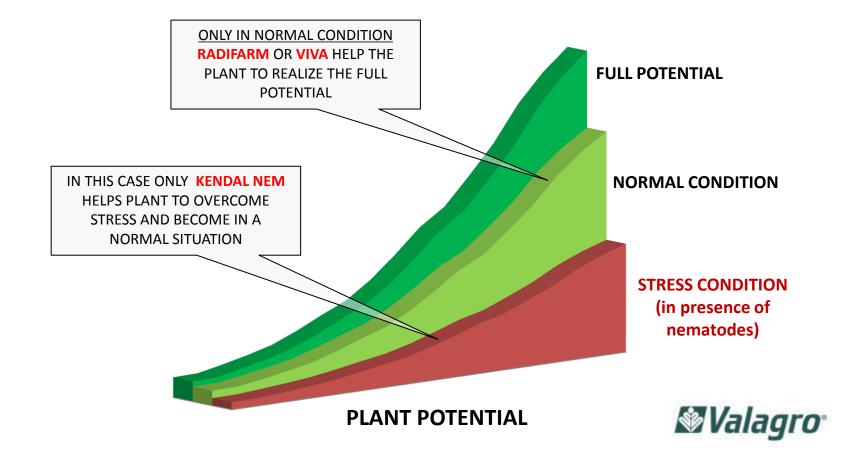
AFTER 1° HARVEST UNTIL THE END OF THE

CROP CYCLE

INTEGRATED CROP MANAGEMENT >>

MENTEN

DOSE AND USAGE	CULTIVAR	APPLICATION RATE AND PERIOD
FERTIGATION	ALL CROPS	0,5 – 2,0 Gal/Acre depending on severity of root damage and frequency of application 7 - 20 days or as needed
FOLIAR*	VEGETABLE CROPS INDUSTRIAL CROPS	0,5 – 2,0 Gal/Acre depending on severity of root damage and frequency of application 7 - 20 days or as needed


^{*} Use a sufficient volume of water to wash the foliage so the product can reach the soil and roots.

- Which kind of product
- How does KENDAL NEM work?
- **KENDAL NEM VS RADIFARM OR VIVA**
- Field Trials

KENDAL NEM vs RADIFARM or VIVA

CAN I USE KENDAL NEM INSTEAD OF RADIFARM/VIVA?

SOIL AFFECTED BY NEMATODES

KENDAL NEM

Plant Recovery **UNDER NEMATODE ATTACK** to achieve and guarantee good production

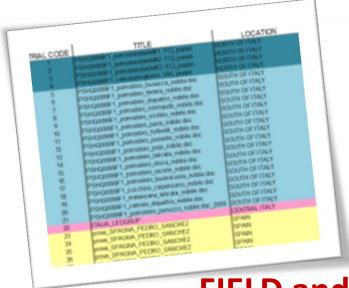
NORMAL CONDITION

RADIFARM VIVA

They work **UNDER NORMAL CONDITION** their effects is reduced or not the best under nematode attack

A CLEAR POSITIONING

«IT IS A SPECIFIC BIOSTIMULANT THAT, IN PRESENCE OF SOILS AFFECTED BY NEMATODES WORKS DIRECTLY ON PLANT ROOT SYSTEM INCREASING PLANT DEVELOPMENT AND ROOTS VIGOUR»


ROOT SYSTEM IMPROVEMENT MEANS A BETTER PLANT DEVELOPMENT AND BETTER PRODUCTIVE PERFORMANCE

MEN JULIAN

- Which kind of product
- How does KENDAL NEM work?
- Kendal Nem vs Radifarm or Viva
- FIELD TRIALS

FIELD and EXPERIMENTALS

TRIALS

Tab.1 General information

Location	Vittoria (RG) sicily
Variety	Belize
Distance beetween rows	0,80/1,20 metre
Distance on the row	0,35 metre
Invest. (p/ha)	30000

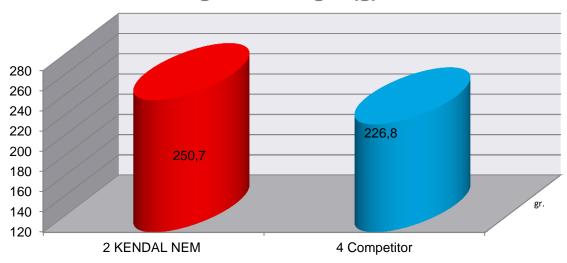
Tab.2 Date and growth stage of the applications

N $^{\circ}$	Treatment	Date	Grouwth stage
1	A	29-jul	Transplant
2	В	20-agu	Flowering of the 1° truss
3	C	10- set	Flowering of the 3° truss
4	D	30-agu	Flowering of the 5° truss

Fenamifos

KENDAL NEM

Tab.3 Treatments


treatment	Product	Rate	Volume of water	Treatment
1	KENDAL NEM and Fenamifos	20 lt/ha	1000 lt/ha	A (Fenam.) B (KENDAL NEM) C (Fenam.) D (KENDAL)
2	Fenamifos (standard)	20 lt/ha	1000 lt/ha	AC

Tab. 7 Average fruit weight (4-15 oct, ripening)

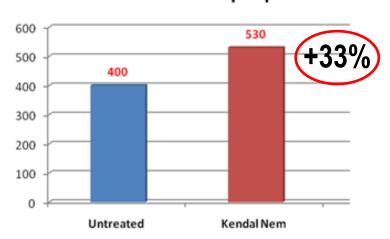
treatment	Average fruit weight 2 harv.		
treatment	gr.		diff%
treat 1 (KENDAL NEM)	251	а	10,5
treat 2 (competitor)	227	b	0,0

Graf. 2. Average fruit weight (g)

Tab.1 General information

Location	Manolada (West Peloponnese)
Crop	Melon
Cultivation environment	Greenhouse
Distance beetween rows	2,80 m
Distance on the row	0,80 m
Transplant date	01/07/2011
Invest. (p/ha)	4800 plants/ha

Tab.2 Date and growth stage of applications


N	Treat.	stage
1	Α	8 days after transplant (09/07)
2	В	24 days after transplant (25/07)
3	С	41 days after transplant (12/07)

Treat.	Treat. Product		Ref.Units	Growth stage of application
1	KENDAL NEM	20	lt/ha	ABC
2	2 Untreated		-	-

Tab.6 Data collected: productive parameters

Treat.	Product	N° Fruit/plot	Difference %	Production ton/ha	Difference %
1	KENDAL NEM	530	33	43,25	35
2	Untreated	400	0	32,00	0

number of fruits per plot

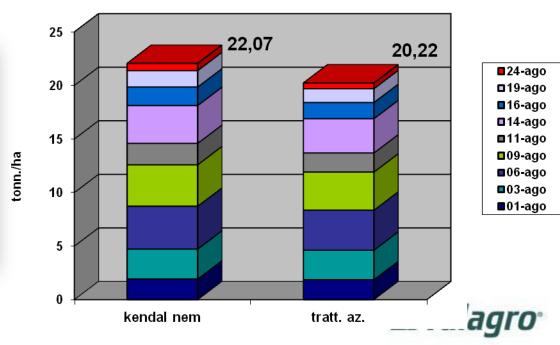
Business Innovation Department Strictly Confidential

yield ton/ha 45,00 40,00 35,00 30,00 25,00 10,00 5,00 0,00 Untreated Kendal Nem

Tab.1 General information

Location	Vittoria(RG)
Crop	Cucumber
Variety	Enki
Distance beetween rows	1,20/0,80 m
Distance on the row	0,33 m
Plants/ha	30000
Cultivation environment	Green house
Level	I screening
Date of transplant	24/06/2010

Treat.	Fruit weight			Spad			
	Gramms		Dif %	Spad		Dif.	
KENDAL NEM	275	а	9,65	46,6 a		2,9	
Sdandard defense	251	b	0,00	43,7	b	0,00	



Tab. 4 Cumulative production at 24/08

data	1/08	3/08	6/08	9/08	11/08	14/08	16/08	19/08	24/08	Tot.
KENDAL NEM (t/ha)	1,93	2,80	4,00	3,87	2,00	3,53	1,73	1,53	0,67	22,07
Untreated (t/ha)	1,87	2,76	3,73	3,56	1,78	3,20	1,51	1,29	0,53	20,22
dif. %	3,57	1,61	7,14	8,75	12,50	10,42	14,71	18,97	25,00	9,12

Business Innovation Department Strictly Confidential

KENDAL NEM

STANDARD

THANK-YOU FOR YOUR ATTENTION

Follow us on:

